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SVM（Support Vector Machine）支持向量机
——用于监督学习的可定式的二分类器

通常有三种形式：
· 线性可分SVM

· 线性SVM

· 非线性SVM
· hard-margin SVM

· soft-margin SVM

· kernel SVM



SVM三个关键词

Margin

Dual

Kernel Trick

定义：γ为整个数据集 𝐷中所有样本到分割超平面的最短距离

SVM的学习策略：margin maximization

拉格朗日乘数法

 convex quadratic programming（with constraint）
 minimizing regularizd hinge loss function（without constraint）

让SVM在非线性可分场景得到适用

通过使用核函数表示特征向量之间的内积，等价于隐式地在高维的特征空间中
学习线性支持向量机。

——李航《统计学习方法》

函数间隔和几何间隔

优化问题(𝒘, 𝑏)→ (𝛼)

KTT条件中的互补松弛条件(complementary slackness)

对偶问题消去了特征空间维度对求解超平面难度的影响



Outline

Hard-margin SVM

Dual  problem

Kernel SVM

Soft-margin SVM 



Hard-margin SVM

{ 𝒙𝑖 , 𝑦𝑖 }𝑖=0
𝑛 , 𝒙𝑖 ∈ ℝ𝑁, 𝑦𝑖 ∈ {−1, +1}

Example：2-dim 线性可分情况

上图N = 2为例

hyper plane 𝒘𝑇𝒙 + 𝑏 = 0

support vector

𝒘𝑇𝒙 + 𝑏 = 1

𝒘𝑇𝒙 + 𝑏 = −1

margin: 𝛶 =
1

| 𝒘 |

SVM二分类器的目标：

找到某一个hyper plane（或者说某一组𝒘, 𝑏）

使得margin最大化



Hard-margin SVM

max
𝒘,𝑏

𝛶 = max
𝒘,𝑏

min
𝑛

𝛶(𝑛)

𝑠. 𝑡.
𝒘𝑇𝒙𝑖 + 𝑏 > 0, 𝑦𝑖 = +1
𝒘𝑇𝒙𝑖 + 𝑏 < 0, 𝑦𝑖 = −1

hyper plane 𝒘𝑇𝒙 + 𝑏 = 0

support vector

𝒘𝑇𝒙 + 𝑏 = 1

𝒘𝑇𝒙 + 𝑏 = −1

margin: 𝛶 =
1

| 𝒘 |

max
𝒘,𝑏

𝛶 ≡ max
𝑤

2

| 𝒘 |

𝑠. 𝑡.
𝑦𝑖(𝑤𝑇𝒙𝑖 + 𝑏) > 0

为了保持所得到的hyper plane是唯一的（准确地说，参数组的唯一）

需要假设 min
𝑤

|𝒘𝑇𝒙𝑖 + 𝑏| = 1

因此，以上等价于

max
𝒘

2

𝒘
2

𝑠. 𝑡.
𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1

等价于

当且仅当 𝒙𝑖 , 𝑦𝑖 为support vector时满足等价条件

规范化：
𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏)

| 𝒘 |
≥

1

𝒘
= 𝛶



Hard-margin SVM

hyper plane 𝒘𝑇𝒙 + 𝑏 = 0

support vector

𝒘𝑇𝒙 + 𝑏 = 1

𝑤𝑇𝒙 + 𝑏 = −1

margin: 𝛶 =
1

| 𝒘 |

max
𝒘

2

𝒘
2

𝑠. 𝑡.
𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1

等价于
min
𝑤

𝒘
2

2
𝑠. 𝑡.

𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1

convex quadratic programming 

SVM： margin maximization

如何去做这个凸优化问题呢？



Dual  problem

min
𝑤

𝒘
2

2

𝑠. 𝑡. 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1

拉格朗日乘数法
不等式约束的优化问题 等式约束的优化问题

Λ 𝒘, 𝑏, 𝛼 =
𝒘

2

2
+෍

𝑖=1

𝑛

𝛼𝑖 (1 − 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏))

𝑠. 𝑡. 𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

𝜕Λ

𝜕𝒘
= 𝒘−෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖𝒙𝑖

分别求对w,b的偏导

𝜕Λ

𝜕b
= −෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖

𝒘 =෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖𝒙𝑖

0 =෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖

代入Λ中得

Γ 𝛼 = −
1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗( 𝒙𝑖

𝑇
𝒙𝑗) +෍

𝑖=1

𝑛

𝛼𝑖 𝑠. 𝑡.෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖 = 0



Dual  problem

min
𝑤

𝒘
2

2

𝑠. 𝑡. 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1

拉格朗日乘数法
不等式约束的优化问题

拉格朗日对偶问题

等式约束的优化问题

将原问题转换为对偶问题的变化：

𝑁：𝒘的维度，即特征个数
𝑛：样本数量对偶问题：含有𝑛个变量数，𝑛 + 1个约束条件。

原问题：含有N + 1个变量数，𝑛个约束条件。

当特征数远大于样本数(𝑁 >> 𝑛)时——拉格朗日对偶形式简化了原问题。

Γ 𝛼 = −
1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗( 𝒙𝑖

𝑇
𝒙𝑗) +෍

𝑖=1

𝑛

𝛼𝑖

𝑠. 𝑡.෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖 = 0，𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

在约束条件下，最大化该对偶函数依然是一个凸二次规划（QP）问题



Dual  problem

min
𝑤

𝒘
2

2

𝑠. 𝑡. 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1

拉格朗日乘数法
不等式约束的优化问题

拉格朗日对偶问题

等式约束的优化问题

Γ 𝛼 = −
1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗( 𝒙𝑖

𝑇
𝒙𝑗) +෍

𝑖=1

𝑛

𝛼𝑖

𝑠. 𝑡.෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖 = 0，𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

KTT给出了互补松弛条件(complementary slackness)

𝛼𝑖 1 − 𝑦𝑖 𝒘𝑇𝒙𝑖 + 𝑏 = 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

当𝛼𝑖 > 0时，𝑦𝑖 𝒘𝑇𝒙𝑖 + 𝑏 = 1， 𝒙𝑖 , 𝑦𝑖 为决策边界上的support vector

对偶问题的最优解仅仅由support vector决定。

互补松弛条件说明当最优解出现在
不等式约束的内部，则约束失效。



Soft-margin SVM

正例和负例样本在特征空间中不是线性可分的情况

为了能够容忍部分不满足约束的样本，引入松弛

变量（Slack Variable）：𝜉

min
𝑤

𝒘
2

2

𝑠. 𝑡. 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1

Hard-margin SVM

min
𝑤

𝒘
2

2
+ 𝐶෍

𝑖=1

𝑛

𝜉𝑖

𝑠. 𝑡. 𝑦𝑖 𝒘𝑇𝒙𝑖 + 𝑏 ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

Soft-margin SVM

参数 𝐶 > 0 用来
控制间隔和松弛
变量惩罚的平衡

优化问题调整为



Soft-margin SVM

引入hinge loss函数

min
𝑤

𝒘
2

2
+ 𝐶෍

𝑖=1

𝑛

𝜉𝑖

𝑠. 𝑡. 𝑦𝑖 𝒘𝑇𝒙𝑖 + 𝑏 ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

Soft-margin SVM

ℒℎ𝑖𝑛𝑔𝑒 = max 0, 1 − 𝑦𝑖 𝒘𝑇𝒙𝑖 + 𝑏 , 𝑖 = 1,2, … , 𝑛

min
𝑤

෍

𝑖=1

𝑛

max 0,1 − 𝑦𝑖 𝒘𝑇𝒙𝑖 + 𝑏 +
𝒘

2

2𝐶

 min
𝑤

෍

𝑖=1

𝑛

ℒℎ𝑖𝑛𝑔𝑒 +
1

2𝐶
𝒘

2

minimizing regularizd hinge loss function 

正则化项

表示为

从而，SVM的学习策略可以变为

无约束问题，可以用通用的深度学习方法来做！

1 𝑦𝑓(𝒙,𝒘)

ℒ



例子：SVM的一个demo实现

min
𝑤

෍

𝑖=1

𝑛

ℒℎ𝑖𝑛𝑔𝑒 +
1

2𝐶
𝒘

2

正则化项

——来自台湾大学李宏毅机器学习课程

基于

我的简单的小demo：（在线性可分的ℝ2 数据集上）

• Step 1：未知参数 𝒘

• Step 2：损失函数 ℒℎ𝑖𝑛𝑔𝑒 + L2的正则项

• Step 3：优化器：mini-batch SGD



Kernel SVM

非线性可分的情况，譬如👇

Γ 𝛼 = −
1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗( 𝒛𝑖

𝑇
𝒛𝑗) +෍

𝑖=1

𝑛

𝛼𝑖

𝑠. 𝑡.෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖 = 0，𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

𝑘 𝒙𝑖 , 𝒙𝑗 = Φ 𝒙𝑖
𝑇
Φ(𝒙𝑗)

使用核函数（Kernel Function）隐式地将样本从原始特征空间映射到更高维的空间

Γ 𝛼 = −
1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑘(𝒙𝑖 , 𝒙𝑗) +෍

𝑖=1

𝑛

𝛼𝑖

𝑠. 𝑡.෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖 = 0，𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛



Kernel SVM

𝑘 𝒙𝑖 , 𝒙𝑗 = Φ 𝒙𝑖
𝑇
Φ(𝒙𝑗)

Γ 𝛼 = −
1

2
෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑘(𝒙𝑖 , 𝒙𝑗) +෍

𝑖=1

𝑛

𝛼𝑖

𝑠. 𝑡.෍

𝑖=1

𝑛

𝛼𝑖 𝑦
𝑖 = 0，𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

核函数

不同的核函数其VC维也不同，对于ℝ𝑁大小的特征空间

- 对于线性核的分类器，其超平面是N-1维的，而VC维是N+1维

- 对于高斯核的分类器，其VC维是无穷



我的分享完毕

谢谢大家！


